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Introduction
Background
Human immunodeficiency virus (HIV) infection is characterised by depletion of naive and 
memory CD4 T-cells due to its ability to damage both thymic and peripheral T-cell homeostasis. 
In addition, there is evidence of direct infection of thymocytes by HIV, which results in defective 
thymopoiesis and apoptosis of CD4 T-cells.1,2

Within a year of initiation of combined antiretroviral therapy (cART), the thymus of adult HIV-
positive patients on cART expands,3 and evidence has shown that infected adults’ thymuses are 
still functional despite physiological involution. Therefore, the thymus plays a role in immune 
recovery or contributes to the lack of immune reconstitution in HIV-infected patients.4 In some 
studies, it has been shown that immune reconstitution in adults is mainly from the memory T-cell 
pool, whereas in children, it is mainly from the naive T-cell subset.5

Literature review
Most studies that have assessed thymic output in HIV patients have shown reduced output prior 
to initiating cART and significant thymic output increase after therapy initiation.4,5,6,7

The ongoing viraemia prior to cART initiation may cause proliferation of recent thymic emigrants 
(RTEs) and result in differentiation to memory T-cells, which are more susceptible to HIV-1 
infection than naive T-cells. This, in addition to reduced thymic function, reduces the number of 

Background: Reduced thymic function causes poor immunological reconstitution in human 
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patients and healthy controls and correlate results with levels of immune activation, CD4 
counts and viral load.

Methods: Blood obtained from 53 consenting HIV-positive individuals and 32 controls 
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measured (CD3+/CD4+/CD45RA+/CD31+/CD62L+) and levels were correlated with CD4 
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CD38+ T-cells).

Results: HIV-infected individuals had reduced frequencies of RTEs when compared to controls 
(p = 0.0035). Levels of immune activation were inversely correlated with thymic function 
(p = 0.0403), and the thymic function in HIV-infected individuals showed no significant 
correlation with CD4 counts (p = 0.31559) and viral load (p = 0.20628).

Conclusions: There was impaired thymic function in HIV-infected individuals, which was 
associated with increased levels of immune activation. The thymic dysfunction was not 
associated with CD4 counts and viral load. Immune activation may result in inflammatory 
damage to the thymus and subsequent thymic dysfunction, and CD4 counts and viral load 
may not necessarily reflect thymic dysfunction in HIV.
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RTEs in HIV infection.8 In addition to improved thymic 
function, another mechanism for the increase seen after 
initiation of cART is the release of lymphocytes that have been 
sequestered in lymphoid tissue during HIV replication.7 The 
effect of the increase due to memory T-cells redistributed from 
lymph nodes wanes after a few weeks of therapy, and the 
increase due to the production of new naive T-cells derived 
from thymopoiesis is maintained for a longer period.6,9

This entrapment of RTEs in lymphoid tissue was particularly 
seen in individuals with high viral loads.10

Immune activation in HIV infection
Chronic infections such as HIV infection are associated with 
chronic inflammation that may be systemic, affecting the 
whole body and leading to persistent immune activation 
with CD4 T-cell activation and turnover.11,12 Immune 
dysregulation causes a sustained increase in pro-inflammatory 
cytokines and erosion of immune defences. Persistent T-cell 
activation accelerates their maturation, cell growth and 
division. Immune activation in HIV leads to premature T-cell 
‘burn out’ or clonal exhaustion and apoptosis.11,12

An important mechanism contributing to immune activation 
is the early damage to the gastrointestinal mucosa, which 
results in the ongoing translocation of microbes and microbial 
products into the systemic circulation.12 This is one of the 
causes of poor immune recovery after cART.1,12,13 Chronic 
immune activation in HIV results in poor immune recovery 
and thus poor outcome and faster disease progression as well 
as end organ complications.12 Chronic immune activation in 
HIV causes increased proliferation of thymocytes, which in 
the long term causes clonal exhaustion of T-cells and 
inflammatory damage to the lymphoid tissue.1,12 Patients with 
a large thymus have shown a better immune reconstitution 
when compared with those with a small thymus; therefore, 
thymopoiesis is important in immune reconstitution. 
Initiating therapy whilst thymic function is still good may be 
important in order to improve clinical outcomes.13 There are 
only few studies that have linked immune activation to 
thymic dysfunction in HIV-infected people.14

CD31 and CD62L cell markers
CD31 is a cell surface marker expressed preferentially by 
naive, T-cell receptor excision circle (TREC)-rich T-cells that 
have undergone a low number of T-cell divisions; therefore, 
CD31 can be used as a marker for RTEs.15,16,17,18,19 It is a 130-kDa 
transmembrane glycoprotein expressed by endothelial cells, 
platelets, monocytes, neutrophils and certain T-cell subsets. 
The average TREC content in CD3+/CD4+/CD45RA+/
CD31+/CD62L+ T-cells is 18 times higher than in CD3+/
CD4+/CD45RA+/CD31-/CD62L+ T-cells confirming the 
strong correlation between CD31-expressing naive CD4 
T-cells and the presence of TREC.15 CD31 is downregulated 
on the majority of CD4 T-cells upon their transition to the 
memory phenotype.15 A progressive decrease of percentages 

and absolute numbers of RTEs has been found associated 
with ageing, and in addition, CD31 is downregulated during 
homeostatic expansion of naive T-cells.13

CD62L (L-selectin) is an adhesion molecule that allows T-cells 
to enter secondary lymphoid tissues via high endothelial 
venules. Early studies showed that bright CD62L expression 
was also a marker found on RTEs.20,21,22 It is expressed by 
naive T-cells and central memory T-cells and is absent on 
effector memory T-cells. It is upregulated by thymocytes23 
and plays an essential role in lymphocyte homing to 
lymphoid tissue and sites of inflammation.23,24

Immune activation at the thymic site may result in 
inflammatory damage to the thymus and subsequent thymic 
dysfunction.1 This study investigated HIV-positive individuals 
who were not yet started on cART and measured thymic 
function using flow cytometry (CD31 and CD62L) as well as 
levels of immune activation (CD38 expression on CD8 T-cells).

Research design
Research approach and methods
This was a cross-sectional study of 53 consenting, untreated 
asymptomatic HIV-infected black South African adults and 
32 uninfected controls aged > 21 years. The study was 
approved by the University of Stellenbosch, Faculty of Health 
Sciences, Human Research Ethics Committee (HREC 
N07/09/197). Patients and controls were recruited from an 
HIV prevention and testing clinic in Cape Town, South Africa. 
All individuals gave informed consent prior to their 
involvement in the study. Whole blood samples of 4 mL were 
collected from patients and controls into a heparin tube for 
measurement of RTEs and levels of immune activation, and 
5 mL of blood was collected into an EDTA tube for CD4 count 
and viral load.

Measurement of recent thymic emigrant frequency using 
flow cytometry
The cell surface molecule expression was monitored by 
staining cells with the following fluorochrome-labelled 
monoclonal antibodies: CD31 FITC 5.6E, CD4 PE 13B8.2, 
CD45RA ECD J.33, CD62L PC5 DREG56 and CD3PC7 
UCHT1. The optimal volumes of each antibody were mixed 
in a 5 µL cocktail and titrated in dilution experiments. The 
samples with 50 µL of heparinised blood and antibody 
cocktail were then incubated in the dark for 15 min at room 
temperature. Five hundred microlitres of phosphate-buffered 
saline (PBS) staining buffer was added and samples were 
analysed immediately. Data acquisition was done using the 
Beckman Coulter FC500 five-colour flow cytometer Calibur 
and CXP software.

Gating strategy
The cell type and size were identified by size, granularity and 
positive expression of surface markers CD31, CD62L and 
CD45RA specific for RTEs on CD4 T-cells. Initial gating was 
performed on CD3-positive population with low side 
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scatter (T-cells). Secondary gating of CD45RA-positive cells 
and CD4-positive cells from the CD3-positive T-cells was 
done. CD3/CD45RA/CD4-positive naive T-cells were 
further analysed for CD31- and CD62L-positivity (RTEs). 
Controls or populations of cells negative for CD31 and 
CD62L were used to establish the ‘cut-off’ values for CD31- 
and CD62L-positivity. RTEs were described as CD3+/CD4+/
CD45RA+/CD31+/CD62L+ T-cells. Levels of expression of 
these markers were correlated with CD4 counts, viral loads, 
levels of activation and patient’s age using Spearman’s R test.

CD4 T-cell count and viral load measurements
The BD MultiTEST CD3-FITC/CD8-PE/CD45-PerCP/CD4-
APC reagent and BD TruCOUNT tubes (BD Biosciences, San 
Jose, CA) were utilised for the measurement of CD4 T-cell 
count. For viral load measurements, blood samples were 
collected into 5 mL EDTA tubes, which were centrifuged at 
20°C at 300 g for 12 min. One millilitre of plasma was 
transferred into a Greiner Bio-one cryotube (Greiner Bio-One 
GmbH, Frickenhausen, Germany) and sent for viral load 
testing. The viral load assay performed was a NucliSensEasyQ® 
HIV-1 v1.2 Viral Load Test (BioMerieux Inc., Boxtel, the 
Netherlands), which has a detection range of 1.60–6.7 log10 
copies/mL. Both these tests were performed at the Division 
of Medical Virology, Faculty of Health Sciences, Stellenbosch 
University, which is accredited by the South African National 
Accreditation System (SANAS).

Measurements of the percentage of CD8+ T-cells 
expressing CD38
This measurement was performed using flow cytometry. 
Briefly, 50 µL of heparinised whole blood was stained with a 
titrated monoclonal antibody cocktail containing CD8 Per-
CP, CD38 APC and CD3 FITC (BD Biosciences, San Jose, CA). 
Data acquisition was performed using a BD FACS Calibur 
instrument, and analysis was done using the BD Cell Quest 
Pro (Version 2) software.

Statistical analysis
The software used for statistical analysis was Graph Pad 
Prism version 5.0 for Windows, Graph Pad software, CA, 
USA. Mann–Whitney U test was used to determine  
% CD38+/8+ T-cells (levels of immune activation) and reported 
as the median and interquartile range, and unpaired t-test 
was used to determine % CD3+/CD4+/CD45RA+/CD62L+/
CD31+ T-cells (RTEs) between the HIV-infected and control 
groups and reported as mean and standard deviation. Non-
parametric data of HIV-positive individuals were analysed 

using Spearman’s R correlations. All p-values were considered 
as significant when < 0.05. These analyses were performed as 
single experiments.

Results
The cohort consisted of 85 consenting individuals with 
similar ages and demographics. Of these, 53 were HIV-
infected individuals and 32 uninfected controls with 
median ages (in years): control group 27 [23–34] versus HIV 
group 28 [25–35], p = 0.2113). Despite being clinically 
asymptomatic, the HIV-positive group had significantly 
lower CD4 counts when compared to the control group 
(p < 0.0001) as shown in Table 1.

RTEs were significantly reduced in the HIV-infected group, 
with mean % value of 40.13 ± 21.72 in HIV-positive group 
versus 54.96 ± 20.10 in control group (p = 0.0035) (as shown in 
Figure 1). Immune activation levels were significantly 
increased in the HIV group as determined by the marker of 
activation, CD38+/8+-positive T-cells, which was increased in 
the HIV-infected group (26.1) versus control group (8.610) 
with a p-value of < 0.0001 (as shown in Figure 2).

Further analysis of HIV group was done using Spearman’s 
R correlations for non-parametric data (as shown in Table 2).

Log viral load correlated inversely with the CD4 counts, 
whereas there was a direct correlation between log viral load 
and levels of immune activation (r = 0.431, p = 0.0027). The 

Note: Percentage of RTEs in HIV-infected group (n = 53) versus control group (n = 32). RTEs 
were significantly reduced in the HIV-infected group, with mean % value of 40.13 ± 21.72 in 
HIV-positive group versus 54.96 ± 20.10 in control group (p = 0.0035). (The bars depict 
standard deviations and the lines are mean %.)

FIGURE 1: Baseline levels of per cent of CD4+/CD45RA+/CD62L+/CD31+ T-cells 
in HIV-positive versus control groups.
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TABLE 1: Participants’ demographics and disease parameters.
Parameters HIV infected† Uninfected controls‡ p-value

n Range n Range

Median age (years) 28 25–35 27 23–34 0.2113

Male: female ratio 1:4 - 1:1 - -

Median CD4 (cells/mm3) 354.0 208–503 828.0 644.8–1123 <0.0001

Log viral load 4.2705 - - - -

CD38+/8+ (% cells gated) 26.14 6.800–12.64 8.610 17.62–40.38 <0.0001

†, n = 53; ‡, n = 32.
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CD4 count correlated inversely with levels of immune 
activation (r = -0.397, p = 0.0035).

Levels of immune activation correlated inversely with the 
number of RTEs (p = 0.0403) in this HIV-positive group. There 
were no significant correlations between age in the HIV-
positive cohort and other parameters such as CD4 counts, 
viral load, levels of immune activation and RTEs in this 
group, and RTEs did not show a significant correlation with 
the CD4 counts or the log viral load.

Discussion
RTEs refer to T-cells that have undergone only a few cellular 
divisions after leaving the thymus.25,26 These naive T-cells 
have recently exited the thymus and have not undergone 
peripheral T-cell proliferation and antigen selection. They 
have high TRECs and their numbers in peripheral blood 
depend on the magnitude of thymic export.17 Therefore, 
measuring the number of RTEs allows assessment of the 
thymic contribution to the peripheral T-cell pool. TREC 
concentrations in RTEs are affected by factors such as 
lymphopenic conditions, where absolute numbers of TRECs 
can be influenced by dilution factors due to peripheral 
expansion of naive and memory T-cells, for example, after 
haematopoietic stem cell transplantation or in HIV-infected 

patients after cART15; ageing also decreases the number of 
TRECs 50–100 fold.15 However, controversy exists as to 
whether TREC concentrations are a good marker for RTE, 
because TREC concentrations are also affected by peripheral 
T-cell turnover events, such as T-cell division and death.17,27,28 
In HIV infection and other lymphopenic diseases, T-cell 
homeostasis is maintained by the ability of the thymus to 
export new naive T-cells.29 Therefore, thymic function can be 
monitored in conditions that influence T-cell depletion and 
reconstitution, such as HIV-1 infection, bone marrow 
transplantation and immunosuppressive therapy.30

In this study, we measured RTEs using flow cytometry, with 
particular use of the marker CD31. We designed and 
optimised a flow cytometry panel that could be used as a 
measure of thymic function in asymptomatic, treatment-
naive HIV-infected patients. We showed that RTEs were 
significantly decreased in this group, even with CD4 counts 
median of 354 cells/mm3 (which is > 350 cells/mm3). The 
treatment cut-off value in South Africa had been below 
350 cells/mm3 until recently. Furthermore, we showed for 
the first time to our knowledge, levels of RTEs by flow 
cytometry correlated inversely with immune activation 
levels in untreated HIV-infected individuals. This supports 
the concept that ongoing immune activation has a damaging 
effect on thymic function in untreated HIV infection. 
Interestingly, RTE levels did not correlate with viral load nor 
CD4 count suggesting that these parameters do not 
necessarily reflect thymic dysfunction at this stage of the 
disease.

Most studies that have assessed thymic output in HIV 
patients have shown reduced output prior to initiating cART 
and significant thymic output increase after therapy 
initiation.4,6,7 However, these studies have not shown the 
difference between HIV-positive individuals and uninfected 
controls, and CD4 counts were lower (200–300 cells/mm3) 
and viral log levels were higher (4.8–5.0 log copies/mL) in 
comparison with our HIV-positive group. In addition, the 
studies that compared untreated HIV-positive individuals 
with uninfected controls were conducted in children.

The results of our study have highlighted previous literature 
findings, wherein untreated HIV-positive individuals have 
increased immune activation when compared to uninfected 
controls.11,31 Furthermore, we showed that the higher levels of 
immune activation (as demonstrated by the increased 
percentage of CD38+/CD8+ T-cells) were significantly 
associated with lower CD4 counts and higher viral loads.

In untreated HIV-positive individuals, the activation marker 
CD38 indicates rapid clinical progression of disease and 
death more strongly than CD4+ T-cell counts and plasma 
HIV RNA levels.32 There is evidence that thymic output is 
required to maintain efficient gut mucosal defence.32 
Bourgeois et al. showed in a mouse model of chemical 
thymomectomy that loss of gut immunity in HIV infection, 
particularly Th17 cells, leads to loss of barrier integrity and 

TABLE 2: Spearman’s R correlations for HIV group.
Non-parametric data for HIV 
group

Non-parametric data for  
HIV group

R p-value

CD4 count RTEs 0.14335 0.31559

CD4 count Log viral load -0.2970 0.0425*
CD4 count Age -0.2371 0.0938

CD4 count Levels of immune activation -0.3977 0.0035*
RTEs Levels of immune activation -0.2910 0.0403*
RTEs Age -0.1494 0.3054

Levels of immune activation Log viral load 0.4311 0.0027*
Levels of immune activation Age -0.1642 0.2543

Log viral load Age -0.0299 0.8449

RTEs Log viral load -0.19204 0.20628

*, p-values are significant: < 0.005.

Note: Percentage of CD38+CD8+ T-cells in HIV-infected group (n = 53) versus control group 
(n = 32). Immune activation levels were significantly increased in the HIV-infected group 
(26.1) versus control group (8.610) with a p-value of < 0.0001. (The bars depict interquartile 
ranges and the lines are median %.)

FIGURE 2: Baseline levels of % of CD38+/CD8+ T-cells in HIV-positive versus 
control groups.
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subsequent bacterial translocation and microbial products 
into circulation, which results in chronic immune activation.29 
These findings suggest that augmenting thymic output can 
be used to correct aberrant activation caused by HIV infection 
or HIV-induced microbial translocation.29,32

Our study findings highlight the concept that ongoing 
immune activation impacts thymic production of naive 
T-cells thus resulting in depletion of the naive T-cell pool seen 
in HIV infection. This is supported by a study conducted by 
Bandera et al. of ex-vivo thymuses from HIV-positive 
individuals and uninfected controls.1 They analysed markers 
of T-cell differentiation and activation at different stages of 
thymopoiesis and found a significantly higher proportion 
of activated and proliferating thymocytes at all stages of 
thymopoiesis in HIV-infected patients compared to controls. 
They suggested that this increased activation and proliferation 
of thymocytes at the thymic site might in the long term cause 
clonal exhaustion of T-cells (‘burn out’) and damage to 
lymphoid tissue.1 The immune activation at the thymic site is 
likely caused by bystander mechanisms and sustained by 
homeostatic proliferation and may result in inflammatory 
damage leading to thymic dysfunction.1 Some studies have 
reported that HIV can directly infect the thymus thereby 
compromising its integrity.2,33 Reduced T-cell restoration has 
been reported to be caused by the effects of atrophy or 
shrinkage of the thymus. Using the simian immunodeficiency 
virus-infected rhesus macaques, Wykrzykowska et al. 
showed that in the first 7 days of infection, the thymus has 
a regenerative capacity with increased cell proliferation; 
however, from 24 weeks after infection there was evidence of 
severe thymic damage.2 This group concluded that the 
regenerative capacity of the thymus is limited in HIV 
infection. Early thymic dysfunction in children is also related 
to rapid progression to acquired immune deficiency syndrome 
(AIDS).34 Middle-aged people with HIV showed evidence 
of immunosenescence (ageing of the immune system) 
resembling that of HIV-negative individuals two decades 
older. The ongoing immune activation and inflammation due 
to constant stimulation by HIV or other chronic infections 
accelerates the process of immunosenescence.11,35

Our findings showed an association between thymic function 
in HIV infection and levels of immune activation. There 
seems to be a vicious cycle that results from immune 
activation causing damage to the thymus and thus causing 
dysfunctional thymic output. In turn, the reduced thymic 
output results in immune activation due to loss of mucosal 
barrier integrity and subsequent bacterial translocation and 
microbial products into circulation.

Conclusion
There is mounting evidence of the contribution by the adult 
thymus to immune reconstitution in HIV infection.1,35 Larger 
thymic size was associated with higher CD4 counts and 
higher thymic outputs.35 We therefore suggest that initiating 
cART in patients with poor thymic function could be 

associated with poor immunological response. This study 
supports earlier initiation of cART, before thymic damage or 
irreversible dysfunction sets in.

This use of flow cytometry markers of RTEs in conjunction 
with a marker of immune activation would be a valuable 
addition to the assessment of thymic function in these 
individuals. This panel could then be used to follow up 
thymic output after initiation of therapy. Other methods used 
to estimate thymic function include measurements of thymic 
volume using computed tomography (CT) scan and 
evaluation of TREC-bearing cells by quantitative polymerase 
chain reaction (PCR).3 However, these techniques are 
expensive and TREC data may be difficult to interpret.36 This 
study presents a robust alternative method that can be used 
simultaneously to measure the levels of immune activation.

Further studies on the measurement of thymic function and 
levels of immune activation in HIV-positive patients with 
CD4 counts > 500 cells/mm3 are recommended. This would 
further establish whether immune dysfunction due to 
decreased thymic output is occurring at even earlier stages 
of the infection. These studies would support the earlier 
intervention with ART for the protection of thymic function 
and better immunologic recovery. It will be important to 
develop novel therapeutic strategies to limit immune 
activation and in doing so, protect the thymus from 
inevitable damage and dysfunction.

Potential study limitations
This study was conducted on the black South African 
population group and therefore may not be representative of 
other racial groups in South Africa. The HIV cohort consisted 
of more females versus males. It is not known whether the 
hormonal differences between the two sexes can influence 
thymic function. It was also unknown how long each HIV-
positive patient had been infected without treatment, and 
therefore, we do not know if the length of infection influences 
thymic output. The HIV-infected individuals are defined as 
being asymptomatic. Symptoms were determined by clinical 
questioning and examination but no further special 
investigations such as CXR were performed; so subclinical 
infections may have been missed. Finally, this was a small 
study group and a follow-up study on a larger cohort is 
considered.
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